
File: 643J 260601 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 4251 Signs: 2480 . Length: 58 pic 2 pts, 245 mm

Information and Computation � IC2606

information and computation 131, 47�61 (1996)

Contextual Insertions�Deletions
and Computability*
Lila Kari and Gabriel Thierrin

Department of Computer Science, University of Western Ontario,
London, Ontario N6A 5B7, Canada

E-mail: lila�csd.uwo.ca

We investigate two generalizations of insertion and deletion of words,
that have recently become of interest in the context of molecular computing.
Given a pair of words (x, y), called a context, the (x, y)-contextual insertion
of a word v into a word u is performed as follows. For each occurrence
of xy as a subword in u, we include in the result of the contextual insertion
the words obtained by inserting v into u, between x and y. The (x, y)-
contextual deletion operation is defined in a similar way. We study closure
properties of the Chomsky families under the defined operations, contextual
ins-closed and del-closed languages, and decidability of existence of solu-
tions to equations involving these operations. Moreover, we prove that
every Turing machine can be simulated by a system based entirely on
contextual insertions and deletions.] 1996 Academic Press

1. INTRODUCTION

In addition to being fundamental in formal language theory, the operations of
insertion and deletion have recently become of interest in connection with the topic
of molecular computing.

The area of molecular computing was born in 1994 when Adleman [1] succeeded
in solving an instance of the Directed Hamiltonian Path Problem solely by mani-
pulating DNA strands. This marked the first instance where a mathematical
problem could be solved by biological means and gave rise to a couple of inter-
esting problems: (a) can any algorithm be simulated by means of DNA manipula-
tion, and (b) is it possible, at least in theory, to design a programmable molecular
computer? To answer these questions, various models of molecular computation
have been proposed, and for some of these models it has been shown that the bio-
operations involved can simulate the actions of a Turing machine (see, for example,
[2, 4, 6, 8, 14, 17, 18]).

In this paper we focus on the formal language operations of contextual insertion
and deletion. In addition to their being theoretically interesting, one of the motivations

article no. 0091

47 0890-5401�96 �18.00

Copyright � 1996 by Academic Press
All rights of reproduction in any form reserved.

* This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering
Research Council of Canada.

File: 643J 260602 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3689 Signs: 3313 . Length: 52 pic 10 pts, 222 mm

for studying these operations is that they can be used as the sole primitives needed
for modeling DNA computation and, moreover, they are already implementable in
the laboratory. Indeed, by using available reagents and a standard technique called
PCR site-specific oligonucleotide mutagenesis [5], one can perform insertions and
deletions of nucleotide sequences. (A similar operation, substitution, has been
proposed in [3] as a bio-operation necessary to simulate a universal Turing
machine.) We investigate mathematical properties of contextual insertion�deletion,
one of the results being that we can obtain the full computational power of a
Turing machine by using solely these two operations.

The contextual insertion operation is a generalization of the catenation and inser-
tion operations on strings and languages: words can be inserted into a string only
if certain contexts are present. More precisely, given a set of contexts we set the
condition that insertion of a word can be performed only between a pair of words
in the context set. Analogously, contextual deletion allows erasing of a word only
if the word is situated between a pair of words in the context set.

Section 2 deals with closure properties of the Chomsky families under contextual
insertion and deletion. If the context set is finite, the families of regular and context-
free languages are closed under contextual insertion and deletion with regular
languages. In general, the families of context-free and context-sensitive languages
are not closed under either operation.

Section 3 deals with contextual ins-closed and del-closed languages: languages
with the property that the result of contextual insertion�deletion of two words in
the language still belongs to the language. The contextual ins-closure�del-closure of
a language L is the smallest contextual ins-closed�del-closed language containing L.
Methods of constructing the contextual ins-closure and del-closure of a language
are given.

Section 4 studies properties of the contextual dipolar deletion operation (an
operation that deletes from a word a prefix and a suffix the catenation of which
forms the word to be deleted) necessary for solving the equations studied in the
next section. Section 5 considers equations of the type L h X=R, Y h L=R for
L, R given languages, X, Y unknowns, and h being either contextual insertion or
contextual deletion. Based on finding left and right inverses to the given operations
and on a general result on these equations (see [10]), problems of decidability of
existence of solutions to these equations are solved.

Section 6 introduces the notion of an insertion�deletion scheme. We prove that
the actions of every Turing machine can be simulated entirely by using contextual
insertion and deletion rules, showing thus the computational completeness of
molecular systems based on these operations. The proof that contextual insertions
and deletions are enough to simulate the actions of a Turing machine thus opens
another possible way to design a molecular computer that uses readily available
reagents and techniques.

2. CONTEXTUAL INSERTION AND DELETION

In the following X will denote an alphabet, that is, a finite nonempty set. The
empty word consisting of 0 letters will be denoted by *. X* denotes the set of all

48 KARI AND THIERRIN

File: 643J 260603 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 2858 Signs: 2020 . Length: 52 pic 10 pts, 222 mm

words, X+ the set of all nonempty words over X, and |X| the cardinality of X.
REG, CF, CS, and RE denote respectively the families of regular, context-free,
context-sensitive, and recursively enumerable languages. For further formal
language notions and notations the reader is referred to [15].

The insertion operation has been studied in [9] as a generalization of catenation.
Given words u and v, the insertion of v into u consists of all words that can be
obtained by inserting v into an arbitrary position of u:

u � v=[u1vu2 | u1u2=u, u1 , u2 # X*].

The above operation is too nondeterministic for modeling the type of insertions
that occur during PCR site-specific oligonucleotide mutagenesis. As the name of the
procedure suggests, the insertions of oligonucleotide sequences are context-sensitive.
Consequently, an attempt to better model the process is to use a modified notion
of insertion so that insertion of a word takes place only if a certain context is pre-
sent. This can be formalized by the notion of contextual insertion [7, 12, 13, 16].

Let (x, y) # X*_X* be a pair of words called a context. The (x, y)-contextual
insertion of v # X* into u # X* is defined as

u �ww
(x, y)

v=[u1xvyu2 | u1 , u2 # X*, u=u1xyu2].

If the word u does not contain xy as a subword, the result of the (x, y)-contextual
insertion is the empty set.

If C�X*_X* is a set of contexts, the C-contextual insertion of u into v is defined
as

u �w
C

v =[u1 xvyu2 | (x, y) # C, u=u1xyu2 , u1 , u2 # X*].

If the context set C is understood, the C-contextual insertion will be called
contextual insertion for short. If C=[*]_[*], then the C-contextual insertion
amounts to the usual insertion (see [9, 10]).

The C-contextual insertion of a language L2 �X* into a language L1 �X* can
be defined in the natural way as

L1 �w
C

L2= .
u # L1, v # L2

(u �w
C

v).

Proposition 2.1. If the set of contexts C is finite, REG, CF, CS are closed under
C-contextual insertion.

Proof. Let L1 , L2 be two languages belonging to REG (respectively CF, CS)
and let C�X*_X* be a finite set.

49CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260604 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 2884 Signs: 1621 . Length: 52 pic 10 pts, 222 mm

For each pair (x, y) # C denote

Lx, y=(X*x*yX*) & (L1}[*]),

where } is the shuffle operation. (If u, v # X*, then u } v=u1v1u2v2 unvn , u=
u1 u2 } } } un , v=v1v2 } } } vn , ui , vi # X*, 1�i�n.)

Note now that

L= .
(x, y) # C

Lx, y=[u1x*yu2 | u=u1 xyu2 # L1 , (x, y) # C, u1 , u2 # X*].

If we consider now the substitution defined by s(*)=L2 "[*], s(a)=a for all
a # X, then we have

v L1 �wC L2=s(L) if * � L2 ,

v L1 �wC L2=s(L) _ [L1 & (�(x, y) # C X*xyX*)], if * # L2 .

The proposition now follows as REG, CF, and CS are closed under shuffle, *-free
substitution, intersection with regular languages, and union. K

In a manner similar to the contextual insertion, we can define the contextual
deletion: deletion of a word takes place only if certain contexts are present. More
precisely, let (x, y) # X*_X* be a context. The (x, y)-contextual deletion of v # X*
from u # X* is defined as

u ww�
(x, y)

v=[u1xyu2 | u1 , u2 # X*, u=u1xvyu2].

If C�X*_X* is a set of contexts, then the C-contextual deletion of v from u is

u w�
C

v=[u1xyu2 | (x, y) # C, u=u1xvyu2 , u1 , u2 # X*].

The C-contextual deletion of a language L2 �X* from a language L1 �X* can
then be defined as

L1 w�
C

L2= .
u # L1, v # L2

(u w�
C

v).

If C=[*]_[*], then the contextual deletion amounts to the usual deletion opera-
tion (see [9, 11]).

Proposition 2.2. If L1 , L2 are languages over X+, L2 a regular one, and if
(x, y) # X*_X* is a context, then there exists a gsm g (with erasing), depending on
(x, y) and L2 , such that L1 ww�

(x, y)
L2= g(L1).

Proof. Let A=(S, X, sA , F, P) be a finite deterministic automaton which
recognizes L2 and let x=a1 a2 } } } an , y=b1b2 } } } bm , n, m�0.

Consider the gsm g=(S$, X, X, s0 , F $, P$), where si , sj $, 0�i�n, 0� j�m, are
new states not in S and

50 KARI AND THIERRIN

File: 643J 260605 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3250 Signs: 2021 . Length: 52 pic 10 pts, 222 mm

S$=S _ [si | 0�i�n] _ [sj $ | 0� j�m]

P$=P _ [s0a � as0 | a # X] (1)

_ [si ai+1 � ai+1si+1 | 0�i�n&1] (2)

_ [sna � s| sAa � s # P] _ [sa � s$0 | sa � sf # P, sf # F] (3)

_ [sna � s$0 | sA a � sf # P, sf # F]

_ [s$j bj+1 � bj+1s$j+1 | 0� j�m&1] (4)

_ [s$ma � as$m | a # X] (5)

F $=[s$m]

Given a word u1xvyu2 as an input, the gsm g works as follows. Rules (1) and (5)
scan respectively the subwords u1 and u2 . Rules (2) and (4) check the appearance
of x and y in the correct order. Rules (3) and the rules of P erase the word v from
the input. Note that the final state can be reached only if a final state of A is
reached, that is, only if a word of L2 occurring between x and y has been erased.

From the above explanations, it follows that L1 ww�
(x, y)

L2= g(L1). K

Corollary 2.1. If the set of contexts C is finite, then REG and CF are closed
under C-contextual deletion with regular languages.

Proof. Let L1 , L2 �X* be languages, L2 a regular one, and let C be a finite
subset of X*_X*. For each (x, y) # C, according to the preceding proposition, we
can construct the gsm gx, y with the property L1 ww�

(x, y)
(L2"[*])= gx, y(L2), taking

care that the sets of states Sx, y are mutually disjoint.
We have that

v L1 w�
C

L2=�(x, y) # C gx, y(L1) if * � L2 ,

v L1 w�
C

L2=[�(x, y) # C gx, y(L1)] _ [L1 & (�(x, y) # C X*xyX*)], if * # L2 .

The corollary now follows as REG and CF are closed under intersection with
regular languages, union, and gsm mapping. K

Proposition 2.3. There exists a finite set of contexts C such that the families of
context-free and context-sensitive languages are not closed under C-contextual
deletion.

Proof. If C=[(*, *)], then L1 ww�
(*, *)

L2=L1 � L2 . The proposition now
follows as CF and CS are not closed under deletion (see [11]). K

3. CONTEXTUAL INS- AND DEL-CLOSED LANGUAGES
This section studies contextual ins-closed (del-closed) languages, i.e., languages

with the property that the contextual insertion (deletion) of two words in the
language still belongs to the language. In order to formalize the notion of a con-
textual ins-closed language, we define the following auxiliary notion. Let L be a

51CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260606 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3296 Signs: 1853 . Length: 52 pic 10 pts, 222 mm

language in X* and C�X*_X* be a set of contexts. The language insC(L) is
defined by

insC(L)=[w # X* | \u # L, u=u1xyu2 , (x, y) # C O u1xwyu2 # L].

Intuitively, insC(L) contains all words with the property that the result of their
C-contextual insertion into words of L yields words still belonging to L. If such
words do not exist, then insC(L)=<.

A language L such that L�insC(L) is called C-ins-closed; L is C-ins-closed iff u,
v # L, u=u1xyu2 , (x, y) # C implies u=u1xvyu2 # L.

The intersection IC(L) of all C-ins-closed languages containing L is a C-ins-closed
language containing L; IC(L) is called the C-ins-closure of L. If L{<, then
IC(L){<.

Given a language L and set of contexts C, one can construct the C-ins-closure
of L by using the iterated contextual insertion. The iterated C-contextual insertion
of a language L2 into L1 is recursively defined as

L1 �w0
C

L2=L1

} } }

L1 �wwk+1

C
L2=(L1 �wk

C
L2) �w

C
L2 , k�0,

L1 �w*
C

L2= .
�

k=0

L1 �wk
C

L2 .

Proposition 3.1. If C�X*_X* is a set of contexts, the C-ins-closure of a
language L�X* is IC(L)=L �w*

C
L.

Proof. ``IC(L)�L �w*
C

L.'' Obvious, as L �w*
C

L is C-ins-closed and L is included
in L �w*

C
L.

``L �w*
C

L�IC(L).'' We show by induction on k that L �wk
C

L�IC(L). For k=0
the assertion holds, as L�IC(L).

Assume that L �wk
C

L�IC(L) and consider a word u # L �ww
k+1

C
L=(L �wk

C
L)

�w
C

L. Then u=u1xvyu2 , where (x, y) # C, v # L and u1xyu2 # L �w
k

C
L. As both

L �w
k

C
L and L are included in IC(L) and IC(L) is C-ins-closed, we deduce that

u # IC(L). The induction step, and therefore the equality, is proved. K

In order to tackle similar issues regarding the contextual deletion, we define the
notion of a C-subword of L :

SubC(L)=[w # X* | _u1 xwyu2 # L with (x, y) # C].

For a given language L�X* and set of contexts C�X*_X* define

delC(L)=[w # SubC(L) | (x, y) # C, u1xwyu2 # L O u1xyu2 # L].

Intuitively, delC(L) contains all the words whose C-contextual deletion from L
yields words still belonging to L.

52 KARI AND THIERRIN

File: 643J 260607 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3044 Signs: 1987 . Length: 52 pic 10 pts, 222 mm

A language L such that L�delC(L) is called C-del-closed ; L is called C-del-closed
iff u, v # L with u=u1xvyu2 , (x, y) # C implies u1xyu2 # L.

The intersection DC(L) of all C-del-closed languages containing L is a
C-del-closed language containing L; DC(L) is called the C-del-closure of L. In the
following we characterize the C-del-closure of a given language L.

Define

D0(L)=L

D1(L)=D0(L) w�
C

(D0(L) _ [*])

D2(L)=D1(L) w�
C

(D1(L) _ [*])

} } }

Dn+1(L)=Dn(L) w�
C

(Dn(L) _ [*])

} } } .

Note that Di (L)�Di+1(L) for i�0.

Proposition 3.2. If C�X*_X* is a set of contexts, the C-del-closure of L is
DC(L)=�n�0 Dn(L).

Proof. Clearly, L�DC(L). Let now v # DC(L) and u1xvyu2 # DC(L), with
(x, y) # C. Then v # Di (L) and u1xvyu2 # Dj (L) for some integers i, j�0. If k=
max[i, j], then v # Dk(L) and u1xvyu2 # Dk(L). This implies u1xyu2 # Dk+1(L)�
DC(L). Therefore DC(L) is a C-del-closed language containing L.

Let T be a C-del-closed language such that L=D0(L)�T. Since T is C-del-
closed, if Dk(L)�T then Dk+1(L)�T. By an induction argument it follows that
DC(L)�T. K

4. CONTEXTUAL DIPOLAR DELETION

A notion symmetric to contextual deletion is contextual dipolar deletion: instead
of deleting a word from the ``middle'' of another one, we delete it from its
``extremities.'' Contextual dipolar deletion assists in obtaining characterizations of
the sets insC(L) and delC(L) associated with a language L that were defined in the
preceding section. Moreover, contextual dipolar deletion will play an important
role in Section 5 in solving certain equations involving contextual insertion and
deletion operations.

Let u, v be words in X* and (x, y) # X*_X* be a context. The (x, y)-contextual
dipolar deletion of v from u is defined as

u w(]w
(x, y)

v=[w # X* | u=u1xwyu2 and v=u1xyu2].

Intuitively, the (x, y)-dipolar deletion u w(]w
(x, y)

v erases from u a prefix ending with

x and a suffix starting with y, whose catenation equals v. If x= y=*, then the
(x, y)-dipolar deletion amounts to the usual dipolar deletion (see [11]), denoted by
u # v.

53CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260608 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 2729 Signs: 1334 . Length: 52 pic 10 pts, 222 mm

If C is a set of contexts, then the C-contextual dipolar deletion is defined as

u #
C

v=[w # X* | u=u1xwyu2 , v=u1xyu2 , (x, y) # C].

If L1 , L2 are languages in X*, then the C-contextual dipolar deletion of L2 from
L1 is

L1 #
C

L2= .
u # L1, v # L2

(u #
C

v).

We consider in the following the closure properties of the families in the
Chomsky hierarchy under contextual dipolar deletion.

Proposition 4.1. If C is a finite set of contexts, the family of regular languages
is closed under C-contextual dipolar deletion.

Proof. We show first that the proposition holds for L1 , L2 �X+ and
C=[(x, y)].

Construct the gsm g1=([s], X, X _ X$ _ X", s, [s], P), where X$=[a$ | a # X],
X"=[a" | a # X], if u=a1a2 } } } an then u$=a$1a$2 } } } a$n , and

P=[sa � a$s, sa � a"s, sa � a | a # X].

Note that the set g1(L1) & [(X$)*x$X*y"(X")*] equals

[u$1x$vy"u"2 | u=u1 xvyu2 , u # L1 , u1 , v, u2 # X*].

If we construct now the gsm g2=([s$], X, X$ _ X", s$, [s$], P$) with

P$=[s$a � as, s$a � a"s$],

then we can show that

g2(L2) & [(X$)* x$y"(X")*]=[u$1 x$y"u"2 | u=u1xyu2 # L2 , u1 , u2 # X*].

Note that the following equality holds:

L1
w(]w
(x, y)

L2=[g1(L1) # g2(L2)] & X*.

If L1 , L2 �X+, then the proposition follows as REG is closed under dipolar
deletion (see [9]), intersection, union, and

L1 #
C

L2= .
(x, y) # C

(L1
w(]w
(x, y)

L2).

To complete the proof for the case L1 , L2 # X*, note that if * # L2 and (*, *) # C,
then

L1 #
C

L2=[(g1(L1"[*]) # g2(L2"[*])) & X*] _ L1 ,

54 KARI AND THIERRIN

File: 643J 260609 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3195 Signs: 2033 . Length: 52 pic 10 pts, 222 mm

while otherwise

L1 #
C

L2=[g1(L1"[*]) # g2(L2"[*])] & X*.

The assertion holds now for any L1 , L2 # X* as REG is closed under union. K

Proposition 4.2. There exists a finite set of contexts C such that CF and CS are
not closed under C-contextual dipolar deletion.

Proof. If C=[(*, *)], then L1#L2=L1 w(]w
(*, *)

L2 and CF, CS are not closed
under dipolar deletion [9]. K

The operation of C-contextual dipolar deletion allows the characterization of the
sets insC(L) and delC(L) introduced in Section 3.

Proposition 4.3. If L is a language over X and C�X*_X* is a set of contexts,
then insC(L)=(Lc #

C
L)c (Lc denotes the complement of the language L).

Proof. Take w # insC(L). Assume, for the sake of contradiction, that
w � (Lc #

C
L)c. Then w # Lc #

C
L, that is, there exist (x, y) # C, and u1 xwyu2 # Lc,

u1 xyu2 # L. We arrived at a contradiction as u1xyu2 # L, w # insC(L), but
u1 xwyu2 � L.

Consider now a word w # (Lc #
C

L)c. If w � insC(L), there exist u1xyu2 # L such
that u1 xwyu2 # Lc. This further implies w # Lc #

C
L��a contradiction of the original

assumptions about w. K

Corollary 4.1. If C�X*_X* is a finite set of contexts and L is a regular
language, then insC(L) is regular.

Proposition 4.4. Given a language L�X* and a set of contexts C�X*_X*,

delC(L)=(L #
C

Lc)c & SubC(L).

Proof. Let w # delC(L). By definition, w # SubC(L). Assume that w # L #
C

Lc.
This means there exists (x, y) # C, and u1 xwyu2 # L, u1xyu2 # Lc. We arrived at a
contradiction as w # delC(L) but u1xyu2 � L.

For the converse inclusion, let w # (L #
C

Lc)c & SubC(L). As w # SubC(L), if
w � delC(L), there exists u1xwyu2 # L with u1xyu2 # Lc. This further implies that
w # L #

C
Lc��a contradiction. K

5. LANGUAGE EQUATIONS

In this section we study language equations of the type L h X=R, Y h L=R,
where L, R are given languages and h denotes either a contextual insertion or a
contextual deletion operation.

In the same way in which subtraction (an ``inverse'' of addition) is needed to
solve numerical equations of the type a+x=b, solving language equations
L h X=R involves finding an ``inverse'' of the language operation h.

55CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260610 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3451 Signs: 2539 . Length: 52 pic 10 pts, 222 mm

After defining the notion of a left inverse and right inverse of a language opera-
tion, we will use the results of [10] and of the preceding sections to construct solu-
tions to the equations, in case they exist.

Let h, { be two binary word operations. The operation { is said to be the left
inverse (respectively right inverse) of the operation h if, for all words u, v, w over
the alphabet X, the following relation holds:

w # (u h v) if and only if u # (w { v)

(respectively, w # (u h v) if and only if v # (u { w).)
If h is a binary word (language) operation, then the reversed h is the operation

defined by u hr v=v h u. Recall the following results concerning solutions of
language equations (see [10]):

Proposition 5.1. Let L, R be languages over an alphabet X and let h, { be two
binary operations right inverses (left inverses) to each other. If the equation LhX=R
(resp. Y h L=R) has a solution, then also the language R$=(L { Rc)c (resp.
R"=(Rc { L)c) is a solution. Moreover, R$ (resp. R") includes all the other solutions
of the equation.

Based on this proposition, we will be able to find solutions to the equations
involving contextual insertion and deletion, provided we find the right and left
inverses of these operations.

Proposition 5.2. (a) The left inverse of the C-contextual insertion is the C-con-
textual deletion, while its right inverse is the reversed C-contextual dipolar deletion.

(b) The left inverse of the C-contextual deletion is the C-contextual insertion
and its right inverse is the C-contextual dipolar deletion.

Proof. (a) Let (x, y) be a context in C. The word w is in u �ww
(x, y)

v iff
w=u1xvyu2 with u=u1 xyu2 , which is equivalent to u # w ww�

(x, y)
v and also to

v # (w w(]w
(x, y)

u). This shows that the C-contextual deletion is the left inverse of the

C-contextual insertion and that reversed C-contextual dipolar deletion is the right
inverse of the C-contextual insertion.

The first part of (b) follows from (a). For the second part, note that
w # (u ww�

(x, y)
v) iff u=u1xvyu2 and w=u1xyu2 , which is equivalent to

v # u w(]w
(x, y)

w. K

Proposition 5.3. If C is a finite set of contexts, the problem ``Does there exist a
solution to the equation L �w

C
X=R (resp. L w�

C
X=R, Y �w

C
L=R, Y w�

C
L=R)? '' is decidable for regular languages L and R.

Proof. This follows from Proposition 5.1, Proposition 5.2, and the fact that
REG is closed under all the involved operations and their inverses (see Proposi-
tion 2.1, Corollary 2.1, and Proposition 4.1).

Moreover, in case a solution to the equation exists, we can effectively construct
a maximal solution to the equation.

56 KARI AND THIERRIN

File: 643J 260611 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3185 Signs: 2144 . Length: 52 pic 10 pts, 222 mm

The solutions are respectively

Xmax=(Rc #
C

L)c for L �w
C

X=R,

Ymax=(Rc w�
C

L)c for Y �w
C

L=R,

Xmax=(L #
C

Rc)c for L w�
C

X=R,

Ymax=(Rc �w
C

L)c for Y w�
C

L=R. K

Recall that, if we choose as the set of contexts C=[(*, *)] then contextual
insertion (contextual deletion, contextual dipolar deletion) amounts to ordinary
insertion (deletion, dipolar deletion). It is known (see [10]) that if h denotes inser-
tion or deletion, the problems of existence of solutions to the equations L h X=R,
Y h L=R are undecidable for context-free languages L and regular languages R.
Consequently, in these cases, the existence of solutions will be undecidable also for
the contextual versions of insertion and deletion.

6. INSERTION AND DELETION SCHEMES

The purpose of this section is to prove that any Turing machine can be simulated
by using only context-sensitive insertions and deletions. With this in mind, we first
define the notion of an insertion�deletion scheme and then proceed to show that if
a language is acceptable by a Turing machine, we can effectively construct an insdel
system that accepts the same language.

An insertion scheme INS is a pair INS=(X, I), where X is an alphabet with
|X|�2 and I�X*_X*_X*, I{<. The elements of I are denoted by (x, z, y)I

with x, y, z # X* and are called the contextual insertion rules of the scheme. For
every word u # X*, let

cinsI (u)=[v # X* | v # u �ww
(x, y)

z, (x, z, y)I # I].

(Informally, in a contextual insertion rule (x, z, y), the pair (x, y) represents the
context of insertion while z is the word to be inserted.) To simplify, we can use the
notation cins(u) instead of cinsI (u) when there is no possible ambiguity. If L�X*
and I is fixed, then

cins(L)=[cins(u) | u # L].

A deletion scheme DEL is a pair DEL=(X, D), where X is an alphabet with
|X|�2 and D�X*_X*_X*, D{<. The elements of D are denoted by (x, z, y)D

and are called the contextual deletion rules of the scheme. For every word u # X*,
let

cdelD(u)=[v # X* | v # u ww�
(x, y)

z, (x, z, y)D # D].

(In a contextual deletion rule (x, z, y), the pair (x, y) represents the context of dele-
tion while z is the word to be deleted.) To simplify, we can use the notation cdel(u)

57CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260612 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 2926 Signs: 1901 . Length: 52 pic 10 pts, 222 mm

instead of cdelD(u) when there is no possible ambiguity. If L�X* and D is fixed,
then

cdel(L)=[cdel(u) | u # L].

An insdel scheme is a triple ID=(X, I, D), where X is an alphabet with |X|�2,
I is a set of insertion rules, and D is a set of deletion rules.

An insdel system ID is a quintuple

ID=(X, T, I, D, |),

where X is an alphabet with |X|�2, (X, I) is an insertion scheme, (X, D) is a
deletion scheme, I, D are finite, T�X is the terminal alphabet, and | # X+ is a
fixed word called the axiom of the insdel system.

If u # X* and v # cins(u) _ cdel(u), then v is said to be directly ID-derived from u
and this derivation is denoted by u O v. The sequence of direct derivations

u1 O u2 O } } } O uk , k�1

is denoted by u1
*O uk and uk is said to be derived from u1 .

The language Lg(ID) generated by the insdel system ID is the set

Lg(ID)=[v # T* | | *O v where | is the axiom]

and analogously we can define the language La(ID) accepted by the insdel system
as

La(ID)=[v # T* | v *O |, where | is the axiom].

Recall that [15] a rewriting system (S, X _ [*], F) is called a Turing machine
iff the following conditions are satisfied.

(i) S and X _ [*] (with * � X and X{<) are two disjoint alphabets
referred to as the state and tape alphabets.

(ii) Elements s0 # S, � # X, and a subset S f �S are specified, namely, the
initial state, the blank symbol, and the final state set. A subset Vf �X is specified
as the final alphabet.

(iii) The productions in F are of the forms

(1) si a � sj b overprint

(2) si ac � asjc move right

(3) si a* � asj�* move right and extend workspace

(4) csi a � sjca move left

(5) *si a � *sj� a move left and extend the workspace,

where si , sj # S and a, b, c # X. Furthermore, for each si , sj # S and a # X, F either
contains no productions (2) and (3) (resp. (4) and (5)) or contains both (2) and
(3) (respectively (4), (5)) for every c # X. For no si # S and a # X, the word sia is
a subword of the left side in two productions of the forms (1), (3), and (5).

58 KARI AND THIERRIN

File: 643J 260613 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3294 Signs: 2223 . Length: 52 pic 10 pts, 222 mm

We say that a word sw, where s # S and w # (X _ [*])*, is final iff w does not
begin with a letter a such that sa is a subword of the left side of some production
in F. The language accepted by a Turing machine TM is defined by

L(TM)=[w # Vf* | *s0 w* *O *w1s fw2* for some sf # Sf ,

w1 , w2 # X* such that s fw2* is final],

where O denotes derivation according to the rewriting rules (1)�(5) of the Turing
machine. A language is acceptable by a Turing machine iff L=L(TM) for some
TM. It is to be noted that TM is deterministic: at each step of the rewriting process,
at most one production is applicable.

Proposition 6.1. If a language is acceptable by a Turing machine TM, then there
exists an insdel system ID accepting the same language.

Proof. Let TM be a Turing machine TM=(S, X _ [*], F) as described above.
We will construct an insdel system ID=(N, T, I, D, Y0) such that the language
accepted by the insdel system is La(ID)=L(TM). The alphabet of ID is
N=S _ X _ [*] _ [O, L, R, Y0 , Y1 , Y2], where O, L, R, Y0 , Y1 , Y2 are new
symbols not appearing in S _ X. The terminal alphabet is T=Vf , the axiom is Y0 ,
and the contextual insertion and deletion rules are defined as follows.

(a) For each rule of the Turing machine TM, insertion and deletion rules are
added to the insdel system in the following fashion, where a, b, c are letters in X,
x, y # X _ X2 _ X3 _ [*], z # X2 _ [*]X, and r, t # X*:

(a1). For each rule (1) sia � sjb (overprint) of F, we add to the insdel
system the rules (xsi a, sjOb, y)I , (x, sia, sjOby)D , and (zsj , O, by)D .

Hence, if u=*rxsiayt*, then rule (1) of TM can be simulated by the following
derivation in ID:

rxsi ayt O *rxsiasjObyt* O *rxsj Obyt* O *rxsjbyt*.

(a2). For each rule (2) siac � asjc (move right) of F, we add to ID the
rules (xsi a, sj R, cy)I , (x, si , asj Rcy)D , and (zasj , R, cy)D .

Hence, if u=*rxsi acyt*, then rule (2) of TM can be simulated by the following
derivation in ID:

rxsi acyt O *rxsiasjRcyt* O *rxasj Rcyt* O *rxasjcyt*.

(a3). For each rule (3) si a* � asj�* (move right and extend workspace)
of F, we add to ID the rules (xsia, sj R� , *)I , (x, si , asjR�*)D , and (xasj , R,
�*)D .

If u=*rxsi a*, then rule (3) of TM can be simulated by the following deriva-
tion in ID:

rxsi a O *rxsiasj R�* O *rxasjR�* O *rxasj�*.

59CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

File: 643J 260614 . By:CV . Date:24:12:96 . Time:15:05 LOP8M. V8.0. Page 01:01
Codes: 3395 Signs: 1685 . Length: 52 pic 10 pts, 222 mm

(a4). For each rule (4) csia � sjca (move left) of F, we add to ID the rules
(x, sj L, csi ay)I , (xsj Lc, si , ay)D , (xsj , L, cay)D .

Hence, if u=*rxcsi ayt*, then rule (4) of TM can be simulated by the following
derivation in ID:

rxcsi ayt O *rxsjLcsiayt* O *rxsj Lcayt* O *rxsjcayt*.

(a5). For each rule (5) *si a � *sj� a (move left and extend workspace) of
F, we add to ID the rules (*, sjL� , si ay)I , (*sj L� , si , ay)D , (*sj , L, � ay)D .

Hence, if u=*si ayt*, then rule (5) of TM can be simulated by the following
derivation in ID:

siayt O *sjL� si ayt* O *sjL� ayt* O *sj� ayt*.

In addition to the rules above, which simulate the rewriting of the Turing
machine by insertions and deletion rules, we introduce the rules (b)

(b1) (*, *s0 , b)I , (b, *, *)I

(b2) (sf , Y1 , a)I , (sf , Y1 , *)I

(b3) (c, sf , Y1)D , (*, s f , Y1)D

(b4) (Y1 , b, c)D , (Y1 , b, *)D

(b5) (b, Y2 , Y1*)I , (*, Y2 , Y1*)I

(b6) (Y2 , Y1 , *)D

(b7) (b, c, Y2)D , (*, b, Y2)D

(b8) (*, Y0 , Y2*)I

(b9) (*, *, Y0)D , (Y0 , Y2*, *)D

(b10) (*, *s0*, *)I , (*sf , Y2 , *)I , (*, s f , Y2*)D ,

where sf ranges over Sf , b, c range over X, and for each sf , a ranges over such
elements of X that s f a is final. It can now be verified that La(ID)=L(TM).

Indeed, if w # L(TM), then w # T* and there exists a derivation

s0w *O *w1sf w2* (V)

for some s f # Sf , w1 , w2 # X*, sf w2* final. To show that w # La(ID) we must find
a derivation w *O Y0 according to the rules of ID. If w{*, such a derivation is

w =O
(b1)

s0w =O
(a)

* *w1sfw2* =O
(b2)

w1sfY1w2 =O
(b3)

w1Y1w2

=O
(b4)

w1Y1 =O
(b5)

w1Y2Y1 =O
(b6)

w1Y2 =O
(b7)

Y2 =O
(b8)

Y0Y2 =O
(b9)

Y0 ,

where =O
(a)

* represents a simulation of the derivation (V) of the Turing machine by
the rules (a).

If w=*, the required derivation is

* ==O
(b10)

s0 ==O
(b10)

Y2 ==O
(b8)

Y0Y2 ==O
(b9)

Y0 .

60 KARI AND THIERRIN

File: 643J 260615 . By:CV . Date:24:12:96 . Time:15:08 LOP8M. V8.0. Page 01:01
Codes: 3459 Signs: 2691 . Length: 52 pic 10 pts, 222 mm

Assume, conversely, that w # La(ID). If w=* there is a derivation according to ID
from *s f* to Y0 where sf # Sf and sf=s0 . This implies that * # L(TM). If w{*
then, according to the way the rules (a) were constructed, there is a derivation
according to ID from

w1sfaw$2, sf # Sf , a # X, w1 , w$2 # X*, sfa final, (VV)

to Y0 , and also a derivation from w to (VV), according to rules (b). This implies
that w # L(TM). K

Received May 15, 1996; find manuscript received September 5, 1996

REFERENCES

1. Adleman, L. (1994), Molecular computation of solutions to combinatorial problems, Science 266,
1021�1024.

2. Adleman, L., On constructing a molecular computer, available ftp :��usc.edu�pub�csinfo�papers�
adleman.

3. Beaver, D. (1995), A universal molecular computer, in ``Proceedings of the DIMACS Workshop on
DNA-Based Computing,'' Princeton.

4. Boneh, D., Lipton, R., Dunworth, C., and Sgall, J., On the computational power of DNA, available
http :��www.cs.princeton.edu� �dabo.

5. Dieffenbach, C. W., and Dveksler, G. S., Eds., (1995), ``A Laboratory Manual,'' 581�621, Cold
Spring Harbor Laboratory Press.

6. Freund, R., Kari, L., and Paun, G. (1995), ``DNA Computing Based on Splicing: The Existence of
Universal Computers,'' Technical Report 185-2�FR-2�95, Institute for Computer Languages,
Technische Universita� t Wien, also available http :��www.csd.uwo.ca�tlila.

7. Galiukschov, B. S. (1981), Semicontextual grammars, Mat. Log. Mat. Ling., 38�50. [In Russian]

8. Head, T. (1987), Formal language theory and DNA: An analysis of the generative capacity of
recombinant behaviors, Bull. Math. Biol. 49, 737�759.

9. Kari, L. (1991), ``On Insertions and Deletions in Formal Languages,'' Ph.D. thesis, University of
Turku, Finland.

10. Kari, L. (1994), On language equations with invertible operations, Theoret. Comput. Sci. 132,
129�150.

11. Kari, L. (1994), Deletion operations: Closure properties, Int. J. Comput. Math. 52, 23�42.

12. Paun, G. (1984), On semicontextual grammars, Bull. Math. Soc. Sci. Math. Rouman. 28 (76), 63�68.

13. Paun, G. (1985), Two theorems about Galiukschov grammars, Kybernetika 21, 360�365.

14. Rothemund, P., A DNA and restriction enzyme implementation of Turing machines, abstract at
http:��www.ugcs.caltech.edu�pwkr�oett.html.

15. Salomaa, A. (1973), ``Formal Languages,'' Academic Press, New York.

16. Squier, C. C. (1988), Semicontextual grammars: An example, Bull. Math. Soc. Sci. Math. Rouman.
32 (80), 167�170.

17. Smith, W., and Schweitzer, A. (1995), ``DNA Computers in vitro and in vivo,'' NEC Technical
Report.

18. Winfree, E., On the computational power of DNA annealing and ligation, available http:��dope.
caltech.edu�winfree�DNA.html.

61CONTEXTUAL INSERTIONS�DELETIONS AND COMPUTABILITY

